0% Complete
|
Sign in
|
Sign Up
Home
/
15th International Fiber and Polymer Research Symposium
Tekstil endüstrisinde kullanılan atık durumundaki haşıllı denim üstüpü ve haşıllı non-denim üstüpü ipliklerin farklı sıcaklıklarda karbonizasyonunun incelenmesi
Authors :
Yunus Önal
1
Dilek Şarapnal
2
Furkan Matur
3
1- İnönü Üniversitesi
2- ÇALIK DENIM
3- İnönü Üniversitesi
Keywords :
Textile Waste،Carbonization،Biochar،Sustainability،Recycling
Abstract :
Textile products become waste after the completion of the production process and consumer use. Annually, 40 million tons of clothing and textile waste are generated worldwide. Today, there are a number of methods for disposal and recycling of waste; recycling of waste is divided into upcycle and downcycle according to the value of the product the waste is transformed into. One of these is upcycle, which allows the waste to gain a higher value than its own value, and the other is downcycle, which creates a product below the value of the waste. In the downcycle method, waste is converted into lower quality textile products or directly burned to obtain energy, but the greenhouse gas emissions released as a result of burning pollute the atmosphere. Carbonization, a process that supports the upcycle method, results in the structural changes of waste materials by molecularly breaking down at high temperatures and inert gas environments. The resulting product is called biochar or carbonized solid. In addition to its use as fuel, it has many areas of use. In this study, carbonized solids were obtained by carbonizing sized denim and non-denim warp waste at 500 °C and 800 °C. Carbonization efficiency and calorific values were calculated, and elemental analyses as well as scanning electron microscope (SEM) analysis were performed on raw materials and carbonized solid products. The best efficiency in the carbonization process was obtained at 500 °C. While 4040.4 cal/g of energy was released when the sized denim warp waste was burned directly, 7725.61 cal/g was obtained when it was burned after carbonization. While 3986.3 cal/g was obtained when the sized non-denim warp waste was burned directly, 7690.79 cal/g was obtained when the carbonized solid was burned. It was determined that converting it to carbonized solid and using it as fuel instead of burning it directly was 75% more profitable in terms of energy.
Papers List
List of archived papers
Development of synthetic waste reinforced composites by melt grafting method and investigation of their mechanical properties
Erhan Demircan
Akrilik Filament İpliğin Hacimliliğinin Arttırılması
Ecem Fırat
Ön mordanlama gerektirmeyen boyalara mordan, soda ve koyulaştırıcı ajanın etkisi
Halil İbrahim TURGUT - Begüm SELÇUK ELGÜN - Özlem YARAR
Poly(2-Hydroxyethyl Methacrylate) modified cellulose nanocrystals and their PBAT - based nanocomposites
EDA JAN YILMAZ ARIKAN - YONCA ALKAN GOKSU - AYLIN ALTINBAY - MOHAMMADREZA NOFAR
Manyetik ve fotokatalitik polimer tanecikleri ile atık suların renksizleştirilmesi ve yeniden kullanım denemeleri
Şeyma YALÇIN TURAN - Ali KARA - Gizem BAYAÇLI - İrem ÖZTURT
Kemik doku mühendisliği uygulamalarında poli(laktik asit) (PLA) kullanımı
Rumeysa İncesu - TARKAN AKDERYA - Ataberk KAPLAN - Gülbahar TABAKOĞLU - Cem GÖK
Sugar based graft polymer for textile applications
Ezgi Topcu Gürbüz - Canan Öztürk - Canberk Yüksel - Gözde Duman
Resistivity-strain behavior of conductive polymer composites-effect of using carbon filler in different geometry
Kübra Güleş - Alper Kaşgöz
%100 Polyester dispers boyama atık sularının yeniden kullanımı ile sürdürülebilir bir dispers boyama reçetesinin geliştirilmesi
Begüm Selçuk Elgün - Halil İbrahim Turgut - Özlem Yarar
Nanofiber Production from Fire-Resistance PAN Polymers Containing Vinyl Phosphonic Acid
Elif Keskin - Mustafa Yılmaz - Nilgün Kızılcan - Nesrin Köken - Ahmet Akar
more
Samin Hamayesh - Version 41.7.5